| 일 | 월 | 화 | 수 | 목 | 금 | 토 |
|---|---|---|---|---|---|---|
| 1 | 2 | 3 | 4 | 5 | 6 | |
| 7 | 8 | 9 | 10 | 11 | 12 | 13 |
| 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| 21 | 22 | 23 | 24 | 25 | 26 | 27 |
| 28 | 29 | 30 | 31 |
- 플로우 방법
- 받아쓰기 설정
- 20살 추천 도서
- 몰입 줄거리
- MBA 비용
- 맥 받아쓰기
- 자기계발서 추천
- 돈의 속성이란
- 생각의 기술 리뷰
- 온라인 파트타임 MBA
- 목적 찾는 법
- 30대 필독서
- 오디오 텍스트 변환
- 자기성찰 자기계발서 추천
- 자기객관화 방법
- 글로벌 MBA
- 30대 필독
- 자산 책 추천
- 몰입하는 방법
- 메타인지 책 요약
- 자산늘리는법
- 자신에게 할 질문
- 메타인지 생각의 기술 독후감
- 청소년 추천 도서
- 30살 추천 도서
- 몰입 책 후기
- 책 추천
- 강자의 언어
- mac 받아쓰기 설정
- 글로벌 MBA 비용
- Today
- Total
Let's enjoy our life
LSTM 본문

Among the best practices for training a Neural Network is to normalize your data to obtain a mean close to 0. Normalizing the data generally speeds up learning and leads to faster convergence.
In theory, it's not necessary to normalize numeric x-data (also called independent data). However, practice has shown that when numeric x-data values are normalized, neural network training is often more efficient, which leads to a better predictor
A time window based MLP outperformed the LSTM pure-AR approach on certain time series prediction benchmarks solvable by looking at a few recent inputs only. Thus LSTM’s special strength, namely, to learn to remember single events for very long, unknown time periods, was not necessary here.
LSTM learned to tune into the fundamental oscillation of each series but was unable to accurately follow the signal.
They do highlight the LSTMs ability to learn oscillation behavior (e.g. cycles or seasonality).
'Study > AI' 카테고리의 다른 글
| 시계열 구현 (Time series forecasting) (0) | 2021.03.29 |
|---|---|
| TOP 10 Artificial Intelligence Companies - 유명한 AI 분석 해외 회사 [2020 - 2021 Selective] (0) | 2021.02.03 |
| AI와 보험 산업 기술 | New AI insurance service based on AI (0) | 2021.02.02 |